program Menampilkan_bintang
Deklarasi :
i,j,n : integer
Algoritma :
input(n);
for i ← n downto 1 do
for j ← n downto 1 do
if j ≤ i then
output('*')
else
output(' ');
endif
endfor
endfor
end.
Langkah pertama cari cari t min (n), t max(n) dan t avg(n)nya berikut hasilnya
T min(n)=n2
T max(n)=2n2
T avg(n)= n2+2n2
2
Kemudian meghitung notasi big oh, omega dan theta nya tiap T(n)
t min(n)=n
-Big oh(O)
T(n)≤O (g(n))
n2≤n2 +1
n0 =0
c =1
-Big omega(Ω)
T(n)≥ Ω (g(n))
n2 ≥n2 -1
n0 =0
c =1
-big theta(θ)
C1(g(n)) ≤ T(n) ≤ C2(g(n))
batas atas
C1(g(n)) ≤ T(n)
n2 -1≤ n2
n0 =0
c1 =1
batas bawah
T(n) ≤ C2 (g(n))
n2 ≤ n2 +1
n0 =0
c2 =1
untuk t max
t max(n)=2 n2
-Big oh(O)
T(n)≤O (g(n))
2n2≤2 n2 +1
n0 =0
c =2
-Big omega(Ω)
T(n)≥ Ω (g(n))
2n2 ≥2n2 -1
n0 =0
c =2
-big theta(θ)
C1(g(n)) ≤ T(n) ≤ C2 (g(n))
batas atas
C1(g(n)) ≤ T(n)
2n2 - 1 ≤2n2
n0 =0
c1 =2
batas bawah
T(n) ≤ C2 (g(n))
2n2≤2n2 + 1
n0 =0
c2 =2
untuk t average
T avg(n)=n2+2n2 = 3n2
2 2
2 2
t(n)=3/2 n2
-Big oh(O)
T(n)≤O (g(n))
3/2 n2≤n2
n0 =0
c =2
-Big omega(Ω)
T(n)≥ Ω (g(n))
3/2 n2 ≥- n2
n0 =0
c =-1
-big theta(θ)
C2(g(n)) ≤ T(n) ≤ C1 (g(n))
batas atas
C2(g(n)) ≤ T(n)
- n2≤3/2 n2
n0 =0
c1 =-1
batas bawah
T(n) ≤ C1 (g(n))
3/2 n2≤n2
n0 =0
c2 =1
Tidak ada komentar:
Posting Komentar